

Este informe incluye informacion importante sobre el agua potable. Si tiene preguntas o comentarios sobre este informe en espanol, favor de llamar al tel. (956) 584-4310 para hablar con una persona bilingue en espanol.

Our Mission Continues

We are once again pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2019. Over the

years, we have dedicated ourselves to produce and deliver the bestquality drinking water that meets all state and federal standards. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water

conservation, and community education, while continuing to serve the needs of all our water users. We hope this information helps you become more knowledgeable about your drinking water.

Please remember that we are always available should you ever have any questions or concerns about your water.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

How Is My Water Treated and Purified?

The treatment process consists of a series of steps. First, raw water is drawn from our water source and sent to the reservoir where copper sulfate (algae control) is added. Gravity then causes the raw water to flow to the raw water pump intake, where we add powdered activated carbon (taste and odor control). Then the water is pumped to the water treatment plant. The water then goes to a rapid mixer where aluminum sulfate and polymer are added. Chlorine dioxide is added for disinfection. The addition of these substances causes small particles to adhere to one another (called floc), making them heavy enough to settle into a basin from which sediment is removed. At this point, the water is filtered through layers of anthracite coal and sand. As smaller, suspended particles are removed, turbidity disappears and clear water emerges. Chlorine and ammonium sulfate are added as a precaution against any bacteria that may still be present. (We carefully monitor the amount of chlorine added, adding the smallest quantity necessary to protect the safety of your water without compromising aesthetics). Finally, polyphosphate, a corrosion inhibitor (to protect distribution system pipes) is added before the water is pumped to sanitized, underground reservoirs, water towers, and into your home or business.

Where Does My Water Come From?

The City of Mission, Water Systems, consists of two water treatment plants: the South Water Treatment Plant (8.0 million gallons per day [mgd]) and the North Water Treatment Plant (17.5 mgd). Our raw water source is the Rio Grande River and the raw water is delivered from the river to the reservoirs via irrigation canals. Combined, our water treatment facilities can treat and purify 25.5 million gallons per day of clean drinking water.

Water Conservation and Drought Contingency Plan

On September 23, 2019, the City of Mission updated the Water Conservation and Drought Contingency Plan (WCDCP) to manage and provide an adequate water supply to meet the future needs of our customers. The purpose of this plan is to establish procedures to identify, classify, and manage an effective and efficient water supply during high water demand or water-shortage emergency. Excessive demand on the water treatment plants and/or continually falling treated-water reservoir levels, which do not refill overnight to a specific level, will trigger six stages of the water conservation plan. These stages range from Stage 1 (voluntary stage) to Stage 6 (water allocation). Utility customers in the City of Mission are encouraged to follow voluntary water conservation Stage 1 under our WCDCP to limit their daily water usage by using good management practices for water conservation. Utility customers will be notified before any stage level change. At such time, customers may incur a surcharge fee based on individual customer's water-usage for Stage 6. Fines up to \$200 may be imposed for any violations of any stage of the water conservation plan and, depending on the severity of the violation, the customer's water service may be terminated.

Important Health Information

You may be more vulnerable than the general population to certain microbial contaminants, such as *Cryptosporidium*,

in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone

organ transplants; those who are undergoing treatment with steroids; and people with HIV/ AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the

risk of infection by *Cryptosporidium* are available from the Safe Drinking Water Hotline at (800) 426-4791.

Questions?

For more information about this report, or for any questions related to your drinking water, please call Filemon Olvera, Water Treatment Plant Supervisor, at (956) 584-4310.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases, radioactive material; and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban storm-water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which may also come from gas stations, urban storm-water runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact our business office. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Tips to Prevent Storm-Water Pollution

- 1. Remember to turn off your sprinklers when it rains to avoid water runoff; during winter, runoff can freeze, causing slippery conditions.
- 2. Bag your pet's waste. Leaving pet waste on the ground increases public health risks by allowing harmful bacteria and nutrients to wash into the storm drains and eventually into local water bodies.
- 3. Don't apply pesticides, fertilizers, or herbicides before it rains. Contrary to popular belief, the rain won't help to soak these chemicals into the ground; it will only help create polluted runoff into our local creeks.
- 4. Select native and adapted plants and grasses that are drought and pest resistant. Native plants require less water, fertilizers, and pesticides. Learn more about native and adapted plants at www.txsmartscape.com.
- 5. Reduce the amount of paved area and increase the amount of vegetated area in your yard.
- 6. If you change your car's oil, don't dump it on the ground or in the storm drain. Dispose of it properly at an oil recycling center.
- 7. Check your car, boat, or motorcycle for leaks. Clean up spilled fluids with an absorbent material; don't rinse the spills into the storm drains.
- 8. Don't get rid of grass clippings and other yard waste by dumping it or sweeping it into the storm drain; this will deplete the oxygen for aquatic life. Instead, compost your yard waste.
- When washing your car at home, wash with only water or use biodegradable soap and wash it on a lawn or other unpaved surface. Better yet, take your car to a professional car wash.
- 10. Don't get rid of old or unused paint by throwing it down the storm drain; dispose of paint and other household hazardous waste at recycling facilities.
- 11. Don't pump your pool water into the storm drain; pool chemicals can be hazardous to our creeks' habitats. Whenever possible, drain your pool into the sanitary sewer system where the water can be treated.
- 12. Don't Mess with Texas! Throw litter away in a garbage can, not out your window. Recycle what you can!

Testing For Cryptosporidium

Cryptosporidium is a microbial parasite found in surface water throughout the United States. Although filtration removes Cryptosporidium, the most commonly used filtration methods cannot guarantee 100 percent removal. Monitoring of source water indicates the presence of these organisms. On January 17, 2017, one Cryptosporidium oocyst was reported from our North raw water intake supplied by an irrigation canal. Current test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immunocompromised people are at greater risk of developing life-threatening illness. We encourage immunocompromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. And, the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The State recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set.

We participated in the 4th stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR4) program by performing additional tests on our drinking water. UCMR4 sampling benefits the environment and public health by providing the U.S. EPA with data on the occurrence of contaminants suspected to be in drinking water, in order to determine if U.S. EPA needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data are available to the public, so please feel free to contact us if you are interested in obtaining that information. If you would like more information on the U.S. EPA's Unregulated Contaminants Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

REGULATED SUBSTANCES								
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE	
Alpha Emitters (pCi/L)	2017	15	0	2	2–2	No	Erosion of natural deposits	
Barium (ppm)	2019	2	2	0.0925	0.0875-0.0925	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	
Beta/Photon Emitters ¹ (pCi/L)	2017	50	0	7.1	7.1–7.1	No	Decay of natural and man-made deposits	
Chloramines (ppm)	2019	[4]	[4]	2.65	1.0-4.1	No	Water additive used to control microbes	
Chlorite (ppm)	2019	1	0.8	0.657	0.137-0.657	No	By-product of drinking water disinfection	
Combined Radium (pCi/L)	2017	5	0	1.5	1.5–1.5	No	Erosion of natural deposits	
Fluoride (ppm)	2019	4	4	0.51	0.35–0.51	No	Erosion of natural deposits; Water additive, which promotes strong teeth; Discharge from fertilizer and aluminum factories	
Haloacetic Acids [HAAs] ² (ppb)	2019	60	NA	18	9.9–25.6	No	By-product of drinking water disinfection	
Nitrate (ppm)	2019	10	10	0.2	0.08-0.2	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	
TTHMs [Total Trihalomethanes] (ppb)	2019	80	NA	38	16.2–48.8	No	By-product of drinking water disinfection	
Turbidity ³ (NTU)	2019	TT	NA	0.25	0.05-0.25	No	Soil runoff	
Turbidity (lowest monthly percent of samples meeting limit)	2019	TT = 95% of samples meet the limit	NA	100	NA	No	Soil runoff	
Uranium (ppb)	2017	30	0	2.3	2.3–2.3	No	Erosion of natural deposits	

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

LRAA (Locational Running Annual Average): The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters. Amount Detected values for TTHMs and HAAs are reported as the highest LRAAs.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (**picocuries per liter**): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (**Treatment Technique**): A required process intended to reduce the level of a contaminant in drinking water.

Tap Water Samples Collected for Copper and Lead Analyses from Sample Sites throughout the Community AMOUNT SITES ABOVE

SUBSTANCE (UNIT OF EASURE)	YEAR SAMPLED	AL	MCLG	DETECTED (90TH %ILE)	AL/TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2017	1.3	1.3	0.18	0/120	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)	2017	15	0	0	1/120	No	Corrosion of household plumbing systems; Erosion of natural deposits

UNREGULATED CONTAMINANT MONITORING RULE - PART 4 (UCMR4) 4

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE
Bromide (ppb)	2019	320	257–320	Erosion of natural deposits
Germanium (ppb)	2019	0.6	0.4-0.6	By-product of mining
HAA5 (ppb)	2019	16.61	12.5–16.61	Erosion of natural deposits
HAA6Br (ppb)	2019	26.54	12.756–26.54	Erosion of natural deposits
HAA9 (ppb)	2019	33.54	18.741-33.54	Erosion of natural deposits
Manganese (ppb)	2019	2.8	0.9–2.8	Erosion of natural deposits
Total Organic Carbon [TOC] (ppm)	2019	4.38	3.77–4.38	Erosion of natural deposits

Source Water Assessment

TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. It is important to understand that this susceptibility rating does not imply poor water quality, only the system's potential to become contaminated within the assessment area.

SOURCE WATER NAME	TYPE OF WATER REPORT	STATUS	LOCATION	SUSCEPTIBILITY RATING
Mission City Reservoir	SW	Active	4th Street and 514 Perkins Ave.	High
North Plant Reservoir	SW	Active	2801 N. Holland	High

For more information on source water assessments and protection efforts at our system, contact Filemon Olvera, Water Treatment Plant Supervisor, at (956) 584-4310.

- ¹The MCL for beta particles is 4 mrem/year. U.S. EPA considers 50 pCi/L to be the level of concern for beta particles.
- ²The value in the Amount Detected column is the highest average of all HAA5 sample results collected at a location over a year.
- ³Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of the effectiveness of the filtration system.
- ⁴Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Water Conservation Tips

You can play a role in conserving water and saving yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips:

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you can save more than 30,000 gallons a year.
- Use your water meter to detect hidden leaks. Simply turn off all taps and water-using appliances. Then check the meter after 15 minutes. If it moved, you have a leak.

Community Participation

We will be staffing a water conservation booth at the upcoming City of Mission National Night Out event this summer. You are encouraged to visit the City of Mission website to participate in this and other community events. The web address is as follows: https://missiontexas.us/news-events/

Water Loss Audit

In the water loss audit submitted to the Texas Water Development Board during the year covered by this report, our system lost an estimated 519.3 million gallons of water, or 11%. If you have any questions about the water loss audit, please call (956) 580-8780.

Emergency/Supplemental Water Sources

On May 27, 2019, the City of Mission coordinated the delivery of potable water from the City of McAllen, TCEQ Public Water System ID No. 1080006, to supplement our water pressure and facilitate water line repairs. For any questions about this water system, please call (956) 681-1700.